LTC4215/LTC4215-2
16
4215fe
 APPLICATIONS INFORMATION
and C2 are cleared by removal of the fault condition, the
switch is allowed to turn on again.
The LTC4215 will set bit D2 and turn off in the event of
an overcurrent fault, preventing it from remaining in an
overcurrent condition. If con gured to auto-retry, the
LTC4215 will continually attempt to restart after cool-down
cycles until it succeeds in starting up without generating
an overcurrent fault.
Data Converter
The LTC4215 incorporates an 8-bit ? A/D converter
that continuously monitors three different voltages. The
? architecture inherently averages signal noise during
the measurement period. The SOURCE pin has a 1/12.5
resistive divider to monitor a full scale voltage of 15.4V
with 60mV resolution. The ADIN pin is monitored with a
1.235V full scale and 4.82mV resolution, and the voltage
between the V
DD
 and SENSE pins is monitored with a
38.6mV full scale and 151糣 resolution.
Results from each conversion are stored in registers E
(Sense), F (Source) and G (ADIN), as seen in Tables 6-8,
and are updated 10 times per second. Setting CONTROL
register bit A5 invokes a test mode that halts the data
converter so that registers E, F , and G may be written to
and read from for software testing.
Con guring the GPIO Pin
Table 2 describes the possible states of the GPIO pin using
the control register bits A6 and A7. At power-up, the default
state is for the GPIO pin to go high impedance when power
is good (FB pin greater than 1.235V). Other applications
for the GPIO pin are to pull down when power is good, a
general purpose output and a general purpose input.
Current Limit Stability
For many applications the LTC4215 current limit will be
stable without additional components. However there are
certain conditions where additional components may be
needed to improve stability. The dominant pole of the cur-
rent limit circuit is set by the capacitance and resistance at
the gate of the external MOSFET , and larger gate capaci-
tance makes the current limit loop more stable. Usually
a total of 8nF gate to source capacitance is suf cient for
stability and is typically provided by inherent MOSFET C
GS
,
however the stability of the loop is degraded by increasing
R
SENSE
 or by reducing the size of the resistor on a gate RC
network if one is used, which may require additional gate
to source capacitance. Board level short-circuit testing
in highly recommended as board layout can also affect
transient performance, for stability testing the worst case
condition for current limit stability occurs when the output
is shorted to ground after a normal startup.
There are two possible parasitic oscillations when the
MOSFET operates as a source follower when ramping
at power-up or during current limiting. The  rst type of
oscillation occurs at high frequencies, typically above
1MHz. This high frequency oscillation is easily damped
with R5 as shown in Figure 1. In some applications, one
may  nd that R5 helps in short-circuit transient recovery
as well. However, too large of an R5 value will slow down
the turn-off time. The recommended R5 range is between
5?and 500?
The second type of source follower oscillation occurs at
frequencies between 200kHz and 800kHz due to the load
capacitance being between 0.2糉 and 9糉 , the presence
of R5 resistance, the absence of a drain bypass capacitor,
a combination of bus wiring inductance and bus supply
output impedance. To prevent this second type of oscillation
avoid load capacitance below 10糉 , alternately connect an
external capacitor from the MOSFET gate to ground with
a value greater than 1.5糉 .
Supply Transients
The LTC4215 is designed to ride through supply transients
caused by load steps. If there is a shorted load and the
parasitic inductance back to the supply is greater than
0.5糎, there is a chance that the supply collapses before
the active current limit circuit brings down the GATE pin.
If this occurs, the undervoltage monitors pull the GATE
相关PDF资料
LTC4216IDE#TRPBF IC CNTRLR HOT SWAP 12-DFN
LTC4221IGN#TRPBF IC CTRLR HOTSWAP DUAL 16SSOP
LTC4222CG#PBF IC CTRLR DUAL HOT SWAP 36-SSOP
LTC4223CDHD-2#PBF IC CNTRLR HOT SWAP DUAL 16-DFN
LTC4224IDDB-2#TRPBF IC CNTRLR HOT SWAP DUAL 10-DFN
LTC4225IGN-1#PBF IC CONTROLLER HOT SWAP 24-SSOP
LTC4230CGN#TRPBF IC CONTRLLR HOT SWAP TRPL 20SSOP
LTC4232CDHC#TRPBF IC CTLR HOT SWAP 5A 16-DFN
相关代理商/技术参数
LTC4215IUFD#TR 制造商:Linear Technology 功能描述:Hot Swap Controller 1-CH 15V 24-Pin QFN EP T/R
LTC4215IUFD#TRPBF 功能描述:IC CNTRLR HOT SWAP 24-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 热交换 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:119 系列:- 类型:热交换控制器 应用:通用型,PCI Express? 内部开关:无 电流限制:- 电源电压:3.3V,12V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:80-TQFP 供应商设备封装:80-TQFP(12x12) 包装:托盘 产品目录页面:1423 (CN2011-ZH PDF)
LTC4215IUFD-1 制造商:LINER 制造商全称:Linear Technology 功能描述:Hot Swap Controller with I2C Compatible Monitoring
LTC4215IUFD-1#PBF 功能描述:IC CTLR HOT SWAP 24-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 热交换 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:119 系列:- 类型:热交换控制器 应用:通用型,PCI Express? 内部开关:无 电流限制:- 电源电压:3.3V,12V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:80-TQFP 供应商设备封装:80-TQFP(12x12) 包装:托盘 产品目录页面:1423 (CN2011-ZH PDF)
LTC4215IUFD-1#TRPBF 功能描述:IC CNTRLR HOT SWAP 24-QFN RoHS:是 类别:集成电路 (IC) >> PMIC - 热交换 系列:- 产品培训模块:Lead (SnPb) Finish for COTS Obsolescence Mitigation Program 标准包装:119 系列:- 类型:热交换控制器 应用:通用型,PCI Express? 内部开关:无 电流限制:- 电源电压:3.3V,12V 工作温度:-40°C ~ 85°C 安装类型:表面贴装 封装/外壳:80-TQFP 供应商设备封装:80-TQFP(12x12) 包装:托盘 产品目录页面:1423 (CN2011-ZH PDF)
LTC4215IUFD-1-PBF 制造商:LINER 制造商全称:Linear Technology 功能描述:Hot Swap Controller with I2C Compatible Monitoring
LTC4215IUFD-1-TR 制造商:LINER 制造商全称:Linear Technology 功能描述:Hot Swap Controller with I2C Compatible Monitoring
LTC4215IUFD-1-TRPBF 制造商:LINER 制造商全称:Linear Technology 功能描述:Hot Swap Controller with I2C Compatible Monitoring